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ABSTRACT

Toward Rotational Cooling of Trapped SiO+ by Optical Pumping

David Tabor

This thesis presents a scheme for preparation of trapped molecular ions with a high degree

of internal state purity by optical pumping with a broadband pulse-shaped femtosecond

laser; the internal structure of SiO+ permits fast stepwise pumping through the tens

of rotational levels populated in a room-temperature distribution. Two analyses, which

guided the experimental implementation, are presented: (1) a novel method of quantify-

ing anharmonicity in the trapping potentials, which limits the number of ions that can

be trapped, and (2) a rate-equation simulation of the quantum state evolution during

pumping. Experimental implementation of pulse shaping and its characterization are

discussed, as is the molecular spectroscopy used to reference this light to the rotational

cooling transitions. Internal state analysis can be performed using resonance enhanced

multiphoton dissociation.
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CHAPTER 1

Laser Cooling and Trapping

In this experiment, 138Ba+ is cooled and trapped as a diagnostic tool for the apparatus

as well as to permit SiO+ loading to be visually confirmed. The first two sections of this

chapter summarize some basics of Ba+ structure and the formalism of radiofrequency

(rf) Paul traps. Much greater detail on these topics is available in the literature and

not repeated here. The final section of this chapter summarizes the sources of heating

experienced by a trapped ion in some detail; it is foundational to the discussion in Ch. 2.

1.1. Laser Cooling of Ba+

Figure 1.1. Ba+ level diagram indicating transitions used in laser cooling.

The levels of 138Ba+ involved in laser cooling are diagramed in Fig. 1.1. From the

ground 6S1/2 state, 493 nm light drives excitations to the 6P1/2 state. This excited state

may decay back to the 6S1/2 state, or alternatively it can decay to the 5D3/2 state. The
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relative branching ratio between these two channels is Γ1/Γ2 ≈ 12 MHz / 4 MHz ≈ 3.

(A decay to 5D5/2 is also possible, but the rate is negligible in comparison to the other

two channels. Other than these three, no other channels are present.) The line widths

reported here are measured by [26].

The 493 nm 6S1/2 → 6P1/2 transition is referred to as the cooling transition and in this

experiment is provided by a frequency-doubled Ti:sapphire laser (Toptica DLPro 123).

Repumping along the 5D3/2 → 6P1/2 transition at 650 nm is produced by an extended

cavity diode laser (ECDL) (Toptica DLPro 123).

Repumping of the Zeeman substructure of these transitions requires both σ+ and σ−

polarizations to be present in the 650 nm repumping beam. Experimentally, a Helmholtz

coil is used to define a quantization axis, and linearly polarized 650 nm light is oriented

at 45◦ to this axis. The decomposition of this orientation along the quantization axis

contains both σ+ and σ− components.
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1.2. The RF Paul Trap

Ion trapping by radiofrequency (rf) electric fields was first demonstrated in 1954 by

Paul in a trap with hyperbolic electrodes [29]. Attempts to maximize the field-free trap-

ping volume led to the development of the linear Paul trap by Prestage in 1989 [31].

Although less harmonic than hyperbolic traps, the field-free central axis of linear traps

often make theirs the preferred geometry for experiments involving multiple laser-cooled

ions, including precision spectroscopy [34, 21], quantum information processing [13, 19],

and cavity quantum electrodynamics applications [14].

A linear quadrupole ion trap (Fig. 1.2) is formed from four parallel cylindrical elec-

trodes of radius re, held at a separation r0, with an rf voltage signal applied to the

electrodes. The resulting electric field confines the ion motion radially; axial confinement

(in the ẑ-direction) is provided by endcap electrodes (not shown in Fig. 1.2), to which a

static voltage is applied.

Near the trap center, the electric potential is given by

φ(x, y, z, t) =
Vrfcos(Ωrf t)

r2
0

(x2 − y2) +

κVec
z2

0

(
2z2 − x2 − y2

2
)(1.1)

where Vrf and Ωrf are the voltage and frequency of the applied rf drive, Vec is the static

voltage applied to the endcap electrodes, z0 is half the distance between the endcap

electrodes, and κ is a geometric factor. While this description is accurate near the trap

center and along the z-axis, significant deviations can occur elsewhere in the trap interior.
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Figure 1.2. End view of a linear quadrupole trap. A sinusoidally varying
voltage is applied to the rod electrodes, with one pair held 180◦ out of phase
with the other.

The radial motion of an ion in the potential of Eq. (1.1) is described by the Mathieu

differential equations, and the stability of this motion is expressed using Mathieu param-

eters which depend only on Vrf , Vec, Ωrf , κ, and the charge-to-mass ratio q/m. Solutions

to the Mathieu equations contain regions of parameter space where ion motion is stable

[27], and trap parameters are chosen to operate in one such stable region.

The motion of a trapped ion can be described approximately as a superposition of

micromotion, in which the ion oscillates at the rf frequency, with secular motion, in

which the ion oscillates in a time-independent pseudopotential φ̃rf (x, y, z) at slower secular

frequencies ωx, ωy, and ωz. An analytic relationship exists between the time-dependent

rf potential and the time-independent pseudopotential [7]:

(1.2) φ̃rf (x, y, z) =
q

4mΩ2
rf

|∇φrf (x, y, z, t = 0)|2
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The endcap electrodes generate a potential φec, and the total potential governing secular

motion is

(1.3) φtrap = φ̃rf + φec.
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1.3. Heating of Trapped Ions

When the thermal energy of a trapped ion cloud is cooled sufficiently below the repul-

sive Coulomb interaction energy, the ions settle into a Coulomb crystal with geometry de-

fined by the trapping potential [49, 20]. Crystallization of certain atomic ion species with

closed-cycle electronic transitions can be accomplished directly by laser cooling [9, 32];

crystallization of other species (e.g., molecular ions) can be accomplished sympathetically

by laser cooling of a co-trapped atomic species [3] or in situ formation from a pre-cooled

reactant [28]. Crystallization can be prevented by various heating mechanisms.

Although radial and axial micromotion vanish, respectively, along the trap axis and

at z = 0, a large crystal necessarily extends beyond these regions. Micromotion heating

results from the transfer of micromotion energy into secular energy, which leads to an

elevated secular temperature. Although the scaling is non-trivial, simulations show that

the micromotion heating rate strongly increases with micromotion amplitude and with

secular temperature [37, 36]. As a crystal grows, additional ions are held at locations with

increasingly strong rf fields, causing them to experience increasingly large micromotion.

The resulting heating limits the minimum obtainable temperature for a crystal of a given

size, and eventually prevents further crystal growth.

Nonlinear resonance heating can occur if a resonance condition is satisfied between

secular frequencies and the rf drive frequency. For linear Paul traps, the condition is

(1.4) nxωx + nyωy + nzωz = Ωrf

where nx, ny, and nz are integers [8]. The corresponding condition for a single particle

in a hyperbolic trap has been derived [44], with the resonances weakening with larger
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n. This behavior has been confirmed in both hyperbolic traps [2] and linear traps [8].

For sufficiently cold trapped samples, it is understood that the frequency of the center

of mass (COM) modes, or other normal modes, should be used in Eq. (1.4) rather than

the single-particle frequencies [50]. For an infinitely long linear Paul trap, or for a small

crystal in a finite trap, where the axial rf drive vanishes, a non-deforming crystal is only

expected to be heated on resonances with nz = 0. However, a crystal which is large

enough to sample axial fringing fields near the endcaps is expected to be excited also by

resonances with nz > 0.

Anharmonicity in the trapping potential causes the mode frequencies to shift as a

crystal grows and samples less harmonic regions of the trap potential. Eventually, the

anharmonicity-shifted mode frequencies of a growing crystal will meet the resonance con-

dition of Eq. (1.4), and some level of heating will occur, potentially halting further crystal

growth.

Even for a crystal of definite size, it is non-trivial to predict the precise response

when it is swept through a given nonlinear heating resonance. Predicting the heating

response in the non-equilibrium scenario of a growing crystal, as anharmonic frequency

shifts cause it to cross a resonance, is yet more complicated. Modeling of the heating

rates and whether crossing a given subharmonic resonance will actually melt a crystal or

prevent further growth is beyond the scope of this analysis.
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CHAPTER 2

Comparison of Trap Geometries

A trap capable of growing large Coulomb crystals is desirable for many types of exper-

iment; in particular, for precision spectroscopy, large crystals improve the rate at which

statistics are collected, often directly improving the achieved precision. This chapter de-

scribes an original method [42] for quantifying the susceptibility of a trap geometry to

the two heating effects (micromotion heating and nonlinear resonance heating) described

in Ch. 2. The axial component of micromotion, which leads to first-order Doppler shifts

along the preferred spectroscopy axis in precision experiments, is also compared.

2.1. Geometries to be compared

Four different linear trap implementations are compared (Fig. 2.1, with corresponding

voltage given in Table 2.1): a conventional in-line endcap design with two different voltage

configurations (designs A and B), a plate endcap design (design C, similar to a design

analyzed in Ref. [30]), and an original rotated endcap design (design D). In all trap

designs, z0 = 8.5 mm, r0 = 4 mm, and re = 4.5 mm, with r0 and re chosen to agree

with the optimal ratio re = 1.14511r0 for minimizing the leading-order contribution to

anharmonicity in the rf potential [33]. Design C uses thin circular plates of radius 2re+r0

as endcap electrodes, with a 2 mm radius hole left for axial optical access. Design D has

four small cylindrical endcap electrodes of radius 1.75 mm, rotated 45◦ around the z-axis;

the central axes of these endcap electrodes are on the same radius as the central axes
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Figure 2.1. Trap designs analyzed in this chapter. Designs A and B share
the same geometry, but differ in applied voltages. In the offset view at right,
designs C and D are shown with the nearest plate endcap pulled away from
the rest of the trap to allow the trap interior to be seen.

Table 2.1. Operating voltages applied in different trap designs. Here
V (t) = +Vrfcos(Ωrf t).

V1 V2 V3 V4

A V (t) −V (t) Vec Vec
B V (t) −V (t) Vec + V (t) Vec − V (t)
C V (t) −V (t) Vec N/A
D V (t) −V (t) Vec N/A

of the rf electrodes. All numerical simulations presented here use values corresponding

to 138Ba+ (q = 1.602 × 10−19 C, m = 2.292 × 10−25 kg) and our operating rf frequency

(Ωrf = 2π × 3.00 MHz).

The potential resulting from grounding all electrodes except the endcaps is denoted

φec and φrf is likewise defined for the rf electrodes. Both are found using the finite element
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method to solve the Laplace equation, with the trap geometries discretized by the meshing

software Gmsh [12].

To allow evaluation of the potentials at locations not on the mesh, the numerical

solutions are fitted to an expansion in associated Legendre polynomials

φfit(r, θ, φ) =
lmax∑
l=0

lmax∑
m=−lmax

Clm rl Pm
l (cos θ)

×


cos(mφ) for m ≥ 0

sin(mφ) for m < 0.

(2.1)

Terms with odd values of l and m are excluded from our fitting due to symmetry.

An analytic form of the gradient of Eq. (2.1) is straightforward to find using

∂Pm
l (cos θ)

∂θ
=

l cos θ Pm
l (cos θ)− (l +m)Pm

−l(cos θ))√
1− cos2θ

,(2.2)

which can be derived from a more general identity given by [1]. Fitting the Laplace

solutions to the above expansion thus permits efficient evaluation of φfit or its gradient

∇φfit at arbitrary location from the coefficients {Clm}. In this way, the pseudopotential

φ̃rf and φec are determined up to the scaling set by choosing Vrf and Vec. Choices of these

voltages, shown in Table 2.2, are made to equalize the single particle secular frequencies

ωz and ωr across all designs at experimentally reasonable values ωx = ωy = 2π× 418 kHz

and ωz = 2π × 18.9 kHz.
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Table 2.2. Vrf and Vec used in comparisons and calculated value of κ for
each trap.

Trap Design Vrf (volts) Vec (volts) κ
A 800 5.0 0.15
B 800 5.0 0.15
C 800 2.7 0.27
D 800 51 0.014

Single particle secular frequencies are calculated by evaluation of φ̃rf and φec along a

radial or axial trace through the origin from r=− r0
2

to r=+ r0
2

or z=− z0
2

to z= z0
2

respec-

tively. The resulting values fit a polynomial whose quadratic coefficient rapidly converges

with finer discretization of the domain or increase of the polynomial fitting order. The

values of κ =
√

2qC2/m are also found from this quadratic coefficient C2 (see Tbl. 2.2).

The effect of inaccuracy in the Laplace solutions is estimated by observing convergence

of calculated values such as κ with increasing meshing density, which is found to cause

variation in all reported results of less than a few percent unless otherwise noted as we

approach the highest mesh densities eventually used – of order 106 nodes for all designs.

Tuning of other parameters, such as the fitting order lmax in Eq. (2.1), is found to cause

negligible variance by comparison.
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2.2. Micromotion amplitude

As described in Ch. 2, micromotion-induced heating can limit crystal growth, though

the dynamics are complex. In this section, trap designs are compared by the amplitude

of micromotion, computed for a single particle as a function of position, without attempt

to specify where the growth of this quantity limits crystal size. The ẑ-components, which

can limit the resolution of precision spectroscopy, are also compared.

Micromotion amplitude is computed from φrf as follows. The electric field created by

the rf electrodes may be written as

(2.3)
−→
E (x, y, z, t) =

−→
E 0(x, y, z)cos(Ωrf t).

For an ion held in place in a stationary crystal, in the limit of small micromotion amplitude

−→
E 0 may be taken as constant as the ion moves, and the micromotion of the ion is harmonic

with amplitude

(2.4) A(x, y, z) =
q

mΩ2
rf

|∇φrf (x, y, z, t = 0)|

With Vrf as set in Table 2.2, φrf (x, y, z, t = 0) is used to calculate the resulting

total micromotion amplitude A(x, y, z). The resulting micromotion contour is plotted in

Fig 2.2. All designs are comparable in the amplitude of total micromotion for any realistic

trapping volume.

The ẑ-components of micromotion are also computed by considering only the ẑ-

component of ∇φrf in Eqn. 2.4. Due to the smallness of these values (several orders

of magnitude smaller than the total amplitude) numerical convergence comparable to
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Figure 2.2. Contour plots of total micromotion amplitude, labeled in mi-
crons. Designs B and D are indistinguishable at this scale.

Table 2.3. RMS average axial micromotion amplitudes over the cylindrical
volume r < 500 µm, |z| < z0 = 8.5 mm. Listed values for A and C change
by no more than several percent when Laplace solutions are calculated over
an order of magnitude in grid density. Values for B and D change by up
to tens of percent. For averaging, the volume is discretized by a Cartesian
grid with h = 20 µm, which is verified to be sufficiently dense.

Trap Design RMS Axial Micromotion Amplitude (µm)
A 1.5
B 0.04
C 2.9
D 0.08

Fig. 2.2 is not observed. Rather than plot contours, we compute the root mean square

(RMS) average over a large trapping volume for each design in Table 2.3, producing a

single quantity whose convergence is verified.

No difference in micromotion heating rate is expected among the different designs,

since total micromotion amplitudes are comparable. Indeed, in all cases axial micromotion

amplitudes are much smaller than total amplitudes, indicating that rf-fringing should not

limit crystal growth for these designs. The actual limit on crystal size due to micromotion
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heating is difficult to estimate, but it can in principle be found from molecular dynamics

simulations.

Axial micromotion, quantified by RMS averaging over a volume bounding any realistic

crystal, is at least than an order of magnitude smaller in designs B and D (in which the

rf electrodes extend to z > z0) than in A and C (in which the rf electrodes end at

z = z0). Since axial micromotion results from fringing of the rf fields, these differences

are expected, given the different rf boundary conditions at z = ±z0. Given a conservative

interpretation of the observed convergence of this average, B and D may be said to have

comparable axial micromotion, while the situation in A is much worse and in C worse

still.
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2.3. Nonlinear resonance susceptibility

As described in Ch. 1.3, anharmonicity in the trapping potential causes nonlinear

resonances to eventually be triggered by a growing crystal. This section introduces a

method for quantifying this effect, based on the shifts in value of the center of mass (COM)

mode frequency as a growing crystal samples increasing amounts of anharmonicity. A

previous analysis by the Marseille group (Pedregosa et. al. [30]) specified a single quantity

describing the radial trap anharmonicity averaged over a trapped sample. The Marseille

approach has the utility of providing a single figure of merit by which to compare different

trap designs; however, it does not consider axial anharmonicity (potentially important for

long crystals) or provide an estimate of what level of anharmonicity is acceptable in

order to avoid heating resonances. The analysis presented here is similarly simple to

calculate, and at the cost of not providing a single figure of merit, seeks to include axial

anharmonicity and to provide a mechanism for determining whether a trap is sufficiently

harmonic to safely work with crystals of some size.

For a zero-temperature crystal in a perfectly harmonic trapping potential, the COM

oscillation frequency is the same as the secular frequency of a single particle. However,

if the temperature of the crystal is nonzero or if the trapping potential is anharmonic,

the crystal deforms during oscillation, and the COM frequency and single particle fre-

quency are no longer equal. (Space charge shifts, which are well-understood in the limit

of each ion moving independently in a background potential describing the distributed

charge of the other ions, occur at high temperatures but not for a non-deforming crystal.)

Molecular dynamics (MD) simulations can find the COM frequency under finite temper-

ature conditions, but this approach is computationally intensive for a large crystal. To
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understand the effects of anharmonicity with less computational overhead, this analysis

approximates the crystal as non-deforming, which of a non-deforming crystal.

Since it is difficult to determine whether crossing a heating resonance will limit crystal

growth or cause other deleterious effects, in the current analysis, we take a conservative

approach of attempting to design a trap in which a growing crystal will avoid low-order

resonances altogether. We consider the anharmonicity-induced shifts of the COM fre-

quencies for a non-deforming crystal; the non-deforming approximation is exact in the

zero-temperature limit. In light of the resonant condition of Eq. (1.4), considering the

COM frequency shifts provides a simple estimate of when trap anharmonicity could limit

crystal growth. Other modes of higher order than the COM mode can also be excited by

nonlinear resonance heating, but the COM shifts are easily calculable and set the scale

for anharmonicity-induced shifts in higher modes.

A single ion in a zero temperature crystal is held in place by the cancellation of two

forces: that due to the trap potential Ftrap and that due to the Coulomb repulsion of all

other ions in the trap Fions. In the approximation that the crystal does not deform during

oscillation, Fions remains constant while Fions +Ftrap is, to leading order, a restoring force

resulting in simple harmonic motion.

Ftrap can be calculated from φtrap, evaluated on a grid (xi, yj, zk) where xi = ih, yj =

jh, and zk = kh; i, j, k are integers; h = 50 µm is the step size used in this calculation.

The restoring force for small displacements in the ẑ direction, at fixed xi and yj is then

calculated as follows. By geometrical symmetry φtrap is an even function of z, so the
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numerically calculated values can be fitted to a polynomial series of even terms:

(2.5) φtrap(z)
∣∣∣
xi,yj

= C0 + C2z
2 + ...+ C10z

10

The axial force on an ion in a potential of this form is

(2.6) Ftrap(z) = −q(2C2z + ...+ 10C10z
9).

For an ion whose equilibrium location in a crystal is z = zk, an expansion of Ftrap about

zk gives

(2.7) Ftrap(z) = Ftrap(zk) + (z − zk)F ′trap(zk) + ...

Since z = zk is an equilibrium position for this ion, the Coulomb force due to all other

ions Fions must exactly cancel the first term of this expansion. In the approximation of a

non-deforming crystal, Fions is a constant, and the total force on the ion is

Ftrap + Fions = −q
(
2C2 + ...+ 90C10z

8
k

)
(z − zk)(2.8)

≡ −kz
∣∣∣
xi,yj ,zk

(z − zk),(2.9)

where kz|xi,yj ,zk is a local spring constant describing the strength of the axial restoring

force on an ion about its equilibrium location (xi, yj, zk). As seen from Eqs. (2.6) and

(2.8), when zk 6= 0, anharmonic terms of the trap potential contribute to the spring

constant kzk .

The restoring force on a crystal is the sum of the restoring forces on the individual

ions. For a non-deforming crystal, the result is oscillatory motion at a frequency set by
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Figure 2.3. COM axial secular frequency as a function of ion number.
Curves for Designs A and B are overlapping. Crystals are grown until their
axial extent reaches ±z0/2; for equal length, design D grows an appreciably
smaller crystal. Ripples result from finite evaluation grid size.

the averaged local spring constants, with the average taken over the ion locations. In our

calculation we average instead over the grid locations, for points interior to the crystal

volume. In this way, the axial COM frequency for a crystal is estimated from φtrap and a

specified crystal geometry. The COM frequencies for radial motion are computed by the

same method using a fitting polynomial of the same order.

Fig. 2.3 shows the change in axial COM frequency in each trap design as crystal

volume grows. Crystal extent is determined by evaluation of φtrap on a Cartesian grid

with spacing h = 50 µm, with all points below a fixed cutoff included, and ion number is

then determined by the ion density [10],

(2.10) ρ =
mε0
q2

(ω2
z + 2ω2

r),

where ωz and ωr = ωx = ωy are the single particle secular frequencies. This density is

assumed constant; the anharmonicity-induced position dependence is negligible.
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Radial COM shifts are also computed, with fittings made to radial rather than axial

traces of φtrap. Over the volume occupied by the largest crystals in Fig. 2.3, no difference

among the designs can be determined at our level of computational accuracy. Varying all

calculation parameters bounds radial COM shifts at no more than tenths of a percent.

The size of COM frequency shifts during crystal growth, found here to differ among

the considered designs, is an indicator for the effect of nonlinear resonance heating on

trap operation. As the experimenter grows a crystal, adding ions continuously from an

ion source, small COM frequency shifts (say a few percent) are not expected to present

significant challenge. The COM frequencies are unlikely to shift onto a nonlinear resonance

during the intermediate stages of crystal growth, and the experimenter can load the largest

crystal possible before checking if different voltages increase the maximum crystal size. For

larger size-dependent shifts, trapping voltages could, in principle, be dynamically tuned

to avoid resonances as the crystal grows, but dynamic tuning would become increasingly

challenging for larger shifts. Thus the designs A, B, and C, which exhibit large COM

frequency shifts, are expected to be more less suitable for growing large crystals than

design D.

As an example of these concerns, we note that for the frequencies considered in this

study, excitation of the nonlinear resonance |nx| + |ny| = 7, nz = 3 is expected when

the axial COM frequency increases by 5-10%, a shift which occurs in design D only for a

crystal containing tens of thousands more ions than in other designs. (Resonances of this

order and higher have been observed experimentally in a linear trap [8].) The expected

ability of D to load more ions than the other designs before exciting this resonance is a

direct result of the smaller axial COM shifts in D. In general, since the rotated endcap
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Figure 2.4. Aspect ratio as a function of crystal size, with aspect ratio
estimated by comparison of the heights of the radial and axial potentials
along x̂ and ẑ respectively. A is overlapped by B and not visible.

design D has the smallest axial COM shifts it is expected to be the least susceptible to

nonlinear resonance heating.

A consideration of aspect ratios during crystal growth can provide some physical

understanding of the behavior of design D. For a perfectly harmonic trapping potential,

the aspect ratio of a crystal will be independent of size and equal to the ratio of the

secular frequencies, which in these traps were tuned to be equal in the harmonic trapping

region. Accordingly, eventual differences in aspect ratio are due to different degrees of

anharmonicity sampled by the trapped ions. In Fig. 2.4, the expected change in aspect

ratio during crystal growth is plotted for each design, calculated by a simple comparison

of the heights of the radial and axial potentials along x̂ and ẑ respectively. The tendency

of design D to maintain larger aspect ratio than other designs explains the ion numbers

seen in Fig. 2.3; at equal length, the crystals in designs A, B and C are radially wider

than D and so contain more ions. Intuitively, the tendency of D toward radially narrower
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crystals helps explain the smaller axial COM shifts in D, since the regions nearer the ẑ

axis are expected to be more harmonic than those radially further away.

The ripples in Fig. 2.3 caused by the finite size of the evaluation grid do not interfere

with the conclusion that the COM frequency shift in D is smaller than in the other

designs, as the trend is clear at much sparser grids, where the ripples are even more

pronounced. The Laplace solutions are found to converge sufficiently to determine the

COM shifts to within a few percent, and all other parameters–the associated Legendre

and polynomial series fitting orders and the evaluation grid density–are adjusted until the

resulting convergence in COM frequency shifts is not limiting.
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CHAPTER 3

Pulse Shaping for Rotational Cooling

Pulse-shaping is the processes by which a spectrally broad light source is manipulated

to remove certain frequency components. In the context of rotational cooling of SiO+, this

pulse can then be used to drive rotational cooling transitions while avoiding rotational

heating transitions. The Orsay group has previously used pulse-shaping of a femtosecond

laser to demonstrate vibrational cooling of neutral alkali dimers created from ultracold

atoms [43][40]. Rotational cooling was not possible in that context because the spacing

of rotational lines in these dimers is much smaller than the 1 cm−1 pulse-shaping resolu-

tion the Orsay group achieved. (Subsequent discussion makes use of the frequency unit

wavenumber ν = 1/λ expressed in cm−1. A frequency interval of 1 cm−1 = 30 GHz.)

3.1. Theory of Pulse Shaping

The optical scheme used for pulse-shaping is schematically depicted in Fig. 3.1 for

a spectrally broad input and in Fig. 3.2 for a monochromatic input. The former of

these input types produces the pulse-shaping relevant for rotational cooling; the latter is

presented here only for explanatory purposes.

The optical configuration used is termed the 4–f Fourier-transform layout [46][39].

In this configuration, the path of a optically broad input pulse may be understood as

follows. The input, assumed to be collimated, is dispersed off a grating. The first order

diffraction is collected by a cylindrical lens of focal length f , placed a distance f from
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the grating so as to collimate the first order beam. At a distance f further beyond the

lens (2f from the grating), a physical mask is placed which has the effect of blocking

some spectral components, while permitting others to pass. A mirror is placed directly

behind the mask (adding no extra path length in the ideal case), and the pulse is reflected

back through the 2f distance to the grating. The diffraction of this pulse off the grating

produces the useable output.

Figure 3.1. Schematic depiction of optics for pulse-shaping, with optical
path traced for a spectrally broad input. This input produces the pulse-
shaped output relevant for rotational cooling. The 4-f Fourier-transform
layout is used.

Figure 3.2. Schematic depiction of optics for pulse-shaping, with optical
path traced for a monochromatic input. This situation is not experimentally
implemented but is presented here as an aid to understanding the theoretical
treatment of pulse-shaping. The 4-f Fourier-transform layout is used.
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The action of pulse shaping can be better understood by reviewing the 4–f configu-

ration while considering a monochromatic input; the experimentally-useable broad input

is then understood as the superposition of many such monochromatic inputs. This case

is depicted in Fig. 3.2. The monochromatic input, again assumed collimated, diffracts

off the grating. The first-order diffraction remains collimated, unlike the spectrally broad

case, and so after passing through the lens, it is focused and produces a beam waist of

minimal size w0 at a distance of f from the lens (2f from the grating).

The spot size of a monochromatic beam at the Fourier plane is

(3.1) w0 =
cos θin
cos θd

λf

πwin
.

The incident angle of the input light to the grating is denoted θin, and the outgoing angle

of the first-order diffraction is denoted θd, both measured relative to the normal from the

grating surface. Many gratings are designed so that first-order diffraction is maximized

when θin ≈ θd, and the configuration is called near-Littrow.

The monochromatic spot size at the Fourier plane, w0 may be compared to the spatial

dispersion, α, which quantifies the spatial separation of different colors at the Fourier

plane and has units of distance per unit frequency [25].

(3.2) α =
λ2f

cd cos θd

where d is the grating period. The diffraction-limited FWHM spectral resolution of pulse-

shaping is then [25]

(3.3) δνd = (ln 2)1/2w0

α
= (ln 2)1/2 cos θin

πwin

cd

λ
.
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The quantity δνd conceptually represents the ”sharpness” of the pulse shaping cutoff, and,

to allow rotational cooling, must be sufficiently narrow to selectively drive certain SiO+

transitions while not driving others.
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3.2. Application to Rotational Cooling

A diatomic molecule possesses three internal degrees of freedom: its electronic con-

figuration, its vibrational motion (stretching and compressing of the internuclear bond)

and its rotational motion (about an axis normal to the internuclear bond). The energy

scales associated with these three degrees of freedom are very different, with electronic

states having the largest energy separations of the three (on the scale of a visible photon,

typically) while rotational spacings are the smallest (in SiO+ of order 100 GHz). The

scheme described here involves excitations from the ground electronic, ground vibrational

state (in which all the room temperature thermal population resides and is distributed

among the rotational levels) to an excited electronic state that also has v=0. This is

termed a 0-0 transition for the vibrational states involved. The electronic states are de-

scribed by a notation analogous to atomic term symbols of the form 2S+1LJ but using the

good quantum numbers of the diatomic molecule. The analogue to L is Λ, the component

of electronic oribtial angular momentum along the internuclear axis. In molecular term

symbols, Σ is used for Λ = 0, Π for Λ = 1, and ∆ for Λ = 2, extending the atomic S, P,

D... convention.

The ground electronic state of SiO+ is X2Σ+. Standard diatomic nomenclature denotes

the ground electronic state the “X-state” and excited electronic states are successively

labeled A, B, C, etc. (The terminology originates from early emission spectroscopy of

the“A-band”, “B-band,” and so on.)

The B state in SiO+ is also 2Σ+ and the driving excitations transitions used in the

proposed rotational cooling scheme are B ← X. The B-X 0-0 band is comprised of

p-branch (∆J = −1) transitions and r-branch (∆J = +1) transitions. Fig. 3.3 reviews
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this structure and the resulting allowed relaxations in a simplified picture in which spin-

rotation coupling is ignored. Pulse-shaping permits rotational cooling of SiO+ by driving

only the p-branch transitions, which remove rotational quanta. After relaxation, which

may occur along either channel, the molecule can either have experienced ∆J = 0 or ∆J

= −2. See Fig. 3.3.

The remainder of this section addresses several concerns omitted in the above simpli-

fied picture.

Vibrational leaks to X(v > 0)

Due to the highly diagonal Franck-Condon factors of the B-X 0-0 transition, population

in B(v′=0) is much more likely to decay to X(v′′=0) than to excited vibrational states

Figure 3.3. Example of an absorption-emission cycle when a p-branch tran-
sition is driven. From its excited state, the molecular ion may decay either
to its original state or to a state with less rotational energy than it origi-
nally had. Over many such cycles, a rotationally hot molecular ion can be
stepwise cooled. The upper and lower rotational manifolds are the B(v′=0
and X(v′′=0) states respectively.
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in X. (Standard nomenclature denotes the upper state quantum numbers with a single ′

and lower state quantum numbers ′′.) This fact permits the stepwise rotational cooling

described above, as several dozen absorption-excitation cycles are required to cool the

rotationally hottest initial population.

A simple script adding up Einstein A factors for leaks to non-cycling states was used to

confirm that vibrational leaks are sufficiently slow; leakage to any of X(v=1-7) is estimated

to take typically >7000 absorption-excitation cycles. The rate-equation simulation of

Ch. 7 can answer questions of this type, but the script (included in the Appendix) is

useful for quick and approximate estimations of leak rates and branching ratios.

The Intervening A State

Decays from the B state to the A state remove population from the cooling scheme,

and due to the large energy separation of the B and A states, one might guess this leak to

be rapid. Differences in dipole moment functions cause the B→A decay to be slower than

expected and, critically, slower than the A→X rate; no population build up in the A state

is expected. The rate-equation simulation in Ch. 7 addresses this issue more thoroughly.

Spin-Rotation Coupling and The Parity Barrier

In 2Σ states, spin-rotation coupling causes each J level to be split into two levels–one

with J increased by 0.5 and the other with J decreased by 0.5 from its original value. The

resulting ladder of rotational states, along with the resulting parities, is shown in Fig. 3.4.

The dipole-allowed E1 transitions used for rotational cooling follow the selection rule

∆P = ±1. After both the absorption and spontaneous emission events have occurred,

the molecule has thus returned to the same parity in which it started. For the room

temperature distribution, the total population in states with positive parity is very close
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to 50%, and likewise for negative parity states. Therefore, the rotational cooling scheme

described here ideally produces a rotationally cooled population split between the ground

states of each parity.

Although the positive parity ground state is the singlet N = 0, J = 1/2, there are

actually two negative parity ground states in SiO+, as the N = 1 state is a doublet, split

by spin-rotation coupling into states with J = 0.5 and J = 1.5. Selection rules prevent

pumping the higher of these two states into the lower by the scheme outlined here.

A planned extension to this experiment is to add a microwave source driving a purely

rotational excitation within the X(v = 0) manifold. This single photon process transfers

population from one parity to the other. All population would then accumulate in the

singlet positive parity ground state.

Pulse shaping resolution

Pulse-shaping is necessary to drive only the p-branch but not the r-branch because the

two branches are separated by 5 cm−1. This level of pulse shaping resolution approaches

the limits of what has been demonstrated, but was produced and characterized in for this

experiment as described in the following section.
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Figure 3.4. After experiencing an absorption-emission cycle, the parity
of the quantum state is unchanged. Population that begins in a positive
parity state is cooled to the N=0, J=1/2 state. Population that begins in
a negative parity state is cooled to either of the N = 1, J = 1/2 state or
the N = 1, J = 3/2 state.
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3.3. Experimental Implementation

A SpectraPhysics MaiTai laser with an 80 MHz pulse repetition rate provides the input

for pulse shaping. The output is tuned to a central wavelength 770 nm with several nm

linewidth. The output is doubled by a BBO crystal placed at the focus of a 50 mm-50 mm

telescope, with a maximum achieved doubling efficiency of 1.9 W/3.0 W = 64%. Tbl. 3.1

lists the part numbers and specifications for the experimentally realized setup.

A commercial spectrometer (Ocean Optics HR4000) was used to characterize the

output of the experimental pulse-shaping setup. A comparison of the spectrum of the

femtosecond laser before and after pulse-shaping, measured with the commercial spec-

trometer, is given in Fig. 3.5.

Figure 3.5. Spectrum of femtosecond laser before and after pulse shaping
as measured by a commercial spectrometer with 10 cm−1 resolution.
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The output from pulse shaping is extracting by a vertical offset from the input beam.

Polarization control was not used to extract the output beam because the grating diffrac-

tion efficiency, which dominates optical power losses in pulse shaping, is polarization-

dependent.

Grating Selection

The primary considerations in grating selection are groove density and first order

diffraction efficiency. As seen in Eqn. 3.2, higher grove density improves shaping reso-

lution, although this is only true up to a limit beyond which the fundamental grating

condition

(3.4) d(sinα + sinβ) = mλ

cannot be satisfied. (α and β are the incoming and outgoing incidence angles to the

normal. Note that setting α to zero recovers the familiar form used for normal incidence.)

Since the left-hand side cannot exceed 2d, λ sets a limit on the largest d that will permit

a valid solution with m = 1. The higher order m ≥ 2 diffracted beams are not useful in

this context due to their greatly lessened diffraction efficiency.

Implementation of Pulse Shaping

A schematic of the pulse shaping implemented for this experiment is given in Fig. 3.6.

The direct fs laser output at 770 nm is frequency doubled to 385 nm (covering the B-X

0-0 band) by a BBO crystal (Type I non-critical phase matching) positioned at the focus

of the telescope pair L1/L2.

A telescope pair L3/L4 follows this section. Adjustment of this telescope ratio is used

to maximize the beamsize at L5, which improves shaping resolution. Expanding the beam
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Figure 3.6. Schematic of pulse shaping setup.

to cover the lens L5 to its edges was found to cause abberation in the shaped frequency

spectrum, however, and the implementation discussed here eventually used a beam that

covered most but not all of the lens L5.

Both ruled and holographic gratings were tested, and the holographic grating was

found to also induce aberration in the shaped spectrum that was sensitive to the difference

in incoming and outgoing beam angles. Since we used vertical separation to extract the

outgoing beam, a ruled grating, which was found not to have this issue, was preferred.

Implementation of Homebuilt Spectrometer

The resolution of the commercial spectrometer is 10 cm−1, making it useful for initial

pulse shaping alignment but insufficient to resolve a shaping cutoff as sharp as the one

desired in this experiment. Accordingly, a homebuilt spectrometer with greater resolution

was built.

The homebuilt spectrometer setup is similar to that for pulse shaping, except at the

Fourier plane the mask and mirror are replaced by a CCD. At this location, the frequency

distribution has been mapped onto spatial position, so a line CCD directly measures the

spectrum of the pulsed shaped beam. The implementation in this experiment uses a line

spectrometer with 8 µm pixel spacing (correspondence with a technician confirmed this
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is the pixel center-to-center distance), which corresponds to a frequency resolution 8 µm

/ (40 µm per cm−1) = 0.2 cm−1, comfortably sufficient to measure a pulse shaping cutoff

with ones of cm−1 width.

Optimization of homebuilt spectrometer is performed similarly to the pulse shaping

setup. Optics are positioned coarsely, then adjusted to bring the measurement into good

agreement with the pulse shaped spectrum measured by the commercial spectrometer.

Additional calibration and optimization of the home built spectrometer was performed

by sweeping the dye laser frequency and observing the resulting shift in peak location on

the line CCD, as shown in Fig. 3.8. The dye laser output is expected to be effectively

monochromatic at this frequency scale, since its linewidth is listed as 0.06 cm−1, although

a verification using far-field Airy ring patters (the linewidth measurement technique de-

scribed in the manual) was not performed.

Figure 3.7. Dye laser as observed on the homebuilt spectrometer. The
linewidth of the dye laser is expected to be much less than the resolution
of the spectrometer.
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Figure 3.8. Calibration of the homebuilt spectrometer. A dye laser (ex-
pected to be monochromatic at this scale) is varied in frequency, and the
resulting line CCD peak location is recorded.

Assuming the dye linewidth is as expected, the measurement in Fig. 3.7 shows a

surprisingly large linewidth. Contact with a technician from the CCD supplier indicated

that some bleedover between pixels is known to occur, resulting from scattering at the

air-glass interface at the CCD surface. An additional bleedover effect also occurs in CCDs

when a pixel is saturated, but this was avoided in the measurement discussed here.



45

Figure 3.9. Homebuilt spectrometer measurement of pulse shaping output.
Overlaid is the B-X 0-0 band measured using the spectroscopy technique
described in Ch. 7.
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Name Vendor Model Number Comment
Pulsed fs laser Spectra Physics MaiTai HP Pulse shaping input
BK-7 sph lens, f=50mm Thorlabs LA1131-B L1. ARC covering

770 nm.
BBO crystal Newlight Custom
UVFS sph lens, f=50mm Thorlabs LA4148-UV L2. ARC covering

385 nm.
UV Cylindrical lenses Thorlabs LJ4918-UV, e.g. L3, L4.*
Posts, post holders, mounts Thorlabs Various

1” UV square mirror Thorlabs PFSQ10-03-F01 Placed at Fourrier
plane

Ruled Grating Richardson 33009BK01-170R 3600 grooves per
mm

Translation stage Thorlabs PT1 Longitudinal tun-
ing of L5, mirror

Translation stage, precision Thorlabs PT1A Transverse razor
motion

Razor blade, mount Mask in Fourier
plane

Dye laser, 385 nm Sirah PSCAN-LG-1800
Commercial spectrometer Ocean Optics HR4000 Useful for coarse

alignment

Table 3.1. Parts list. Vendor part numbers confirmed accurate as of April
14, 2014. *Purchasing a variety of focal lengths from f=10 mm to f=100 mm,
to allow later tuning of L3/L4 telescope ratio, is recommended.
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CHAPTER 4

Rate Equation Simulation of Molecular Population Dynamics

4.1. Introduction and Motivation

Whereas laser cooling of atomic ions typically involves two or three quantum states,

the vibrational and rotational degrees of freedom present in molecular ions cause many

more states to be involved. The population dynamics relevant for rotational cooling

therefore involves many more states than are easy to treat from a direct extension of the

standard three-level ”lambda” system. A rate-equation simulation, which treats states

classically in that coherences are ignored, was developed to gain intuition regarding the

cooling process.

The primary advantage of optical pumping for rotational cooling, as compared to the

IR pumping methods which have been previously demonstrated [41] [38], is the rapid

timescale—order µsec—on which cooling is achieved. To see that this µsec estimate

is accurate under ideal circumstances, one can note that rotational cooling from J ′′ =

40 requires typically 40 excitation-relaxation cycles when only p-branch transitions are

driven. (Decays to X(v > 0) or to the A state are very slow comparatively.) The duration

of this number of cycles is approximately 40∗70 nsec = 3 µsec. Understanding the factors

contributing to this thermalization timescale, whose behavior might be unintuitive under

non-ideal conditions, partly motivated the development of this simulation. J ′′ = 40 is
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used as an estimate of the highest rotational level that needs to be cooled because > 99%

of the thermal population is contained below this level, as can be seen as follows.

At room temperature, the internal states of SiO+ equilibrate with the blackbody distri-

bution with population contained entirely within the X(v = 0) manifold. Approximating

the molecule as a rigid rotor, Herzberg (III, 162) gives the rotational state distribution

within a vibrational manifold as

(4.1) NJ ∝ (2J + 1)e−BeJ(J+1)hc/kT

with the distribution parameterized only by Be, the rotational constant, and T , the black-

body temperature with which the population equilibrates [15]. As shown in Fig. 4.1,

almost all the population is contained below J = 40, which is energetically below the

v = 1 manifold, confirming that at T = 300 K the population is contained entirely within

X(v = 0).

An additional motivation for the simulation is the overlap of the p-branch of the 0-0

vibrational band, which must be driven for rotational cooling, with the 1-1 vibrational

band. To a lesser degree, the 2-2 and higher ∆v = 0 bands are overlapped as well.

The effect of unwanted driving of bands other than 0-0 is tested by the rate-equation

simulation.

The effect of suboptimal pulse shaping resolution can also be investigated. The sepa-

ration of the B-X(0-0) p- and r-branches in SiO+ is approximately Be = 4× 0.7 cm−1 =

2.8 cm−1, though achieving this resolution as well as confirming it by measurement are

both separately difficult. A theoretical treatment of pulse shaping resolution and discus-

sion of experimental characterization is given in Ch. 3. Setting the position of the pulse
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Figure 4.1. T = 300 K distribution of SiO+ internal states. Be =
0.721 cm−1, as measured by Rosner [35], is used to generate this plot.
> 99% of the population is contained below J = 40. Each J value corre-
sponds to two quantum levels which differ by ∆K = 1 except for J = 0
(see Ch. 4), though this detail has been ignored for simplicity in generating
this figure.

shaping cutoff from reference spectroscopy is described in Ch. 6 and achievable precision is

discussed. The rate-equation simulation can show the expected sensitivity of the cooling

process to imprecision in cutoff positioning.
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4.2. Methodology

As described quantitatively in Sec. 4.1, several dozen rotational levels of SiO+ are

populated at room temperature. Since each optical excitation causes at most ∆J = −1,

for rate-equation simulation to describe step-wise rotational cooling from the highest J

levels involves a similar number of rotational levels in the B(v = 0) manifold. Including

in the simulation levels up to J = 40 in the X(v = 0) manifold is sufficient to describe

cooling from the room temperature distribution, as > 99% of the population is included in

these levels (see Fig. 4.1). Since the cooling is step-wise, rotational levels up to J = 40 in

B(v = 0) are also required. In all simulations, vibrational levels from zero up to vmax = 7

are included for each of the three electronic states X,A, and B, resulting in a total of

1072 states. Each of these parameters which set the number of quantum levels included

is verified to be sufficient by observing convergence to the values reported here as the

number of quantum levels included is increased from below.

Einstein A coefficients are calculated using LEVEL 8.0 [22], with input energy separa-

tions from Ref. [5] and potential energy curves and dipole transition moment curves from

Refs. [4, 48]. This work was done by Jason Nguyen. The resulting table of transitions

includes up to v′max = v′′max = 7 and J ′max = J ′′max = 5.5. The current work extends this

table of transitions up to J ′max = J ′′max = 40 using scaling by Hönl-London factors. The

original Nguyen table and the script used to generate this extended table are included as

supplemental materials. The Hönl-London scaling process is described below.

Within a given vibrational band, the Einstein A coefficient of any rotational line

may be calculated from the A coefficient for another rotational line by scaling by Hönl-

London factors. This results from the fact that the matrix element which sets the A
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coefficient is the same for these two transitions up to their Hönl-London factors—they

have identical electronic and vibrational wavefunction overlaps. The script used to extend

the original Nguyen table uses this concept to calculate the A coefficient for higher J levels

by multiplying the known A coefficient of a lower J level by the appropriate ratio of Hönl-

London factors.

The general formula for the Hönl-London factors is cumbersome, but simplifies for the

particular case of 2Σ+–2Σ+. The B-X transition in SiO+ is of this type, and, from [45],

the Hönl-London factors are

SN ′, J ′, N ′′, J ′′ = (2J ′ + 1)(2J ′′ + 1)

N ′ 1 N ′′

J ′′ 1
2

J ′


2

×

(2N ′ + 1)(2N ′′ + 1)

N
′ 1 N ′′

0 0 0


2

(4.2)

where parentheses denote the Wigner 3-j operation and curly brackets denote the Wigner

6-j operation.

The author is unaware of a standard numerical implementation for these Wigner op-

erations, and since they involve factorials and recursively-calculated Clebsch-Gordon co-

efficients, computation for large values of angular momentum is nontrivial. The näıve

implementation used in this calculation is included in the supplemental materials. It is

confirmed to produce Hönl-London factors of the correct order of magnitude up to J = 40.

(Due to summation and selection rules, the Hönl-London factor in this context is typically

1/3 and never exceeds one; it may be interpreted as a rotational branching ratio, and three

decays are possible from any given excited state in a 2Σ+–2Σ+ transition. See Ch. 4.) For
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J > 60, however, numerical divergence is observed. A simulation at higher temperatures,

such as the 1000’s of K produced by ablation loading, would require attention to this

issue.

The population evolution as a function of time is found by solving the set of coupled

ordinary differential equations described by

(4.3) ~̇x = D~x

where ~x is the vector of populations corresponding to each basis state.

The system of rate equations is generated from the list of allowed transitions as follows.

First consider the simple case of a two level system in which a single transition is allowed.

The full system of rate equations is

dx2

dt
= −A21x2 −B21ρ(ω0)x2 +B12ρ(ω0)x1

= B12ρ(ω0) · x1 + [−A21 −B21ρ(ω0)] · x2(4.4)

and

(4.5)
dx1

dt
= −B12ρ(ω0) · x1 + [A21 +B21ρ(ω0)] · x2.

By extension, for a full system of basis states ~x,

dxj
dt

=
∑
i

−Akixk −Bkiρ(ω)xi +Bikρ(ω)xk

+
∑
k

Ajkxj +Bjkρ(ω)xj −Bkjρ(ω)xk(4.6)
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where the summation i is over the set of states for which a downward transition to j is

allowed, and the summation k is over the set of states for which an upward transition to

j is allowed. ρ quantifies the optical power available to drive the specified transition and

is discussed in more detail below. The transition matrix elements Dji are defined so that

(4.7)
dxj
dt

=
∑
i

Djixi.

The resulting system of first-order ordinary differential equations in the form given

by Eqn. 4.3 is solved by the numerical method odeint, called from the Python (v 2.7)

package Scipy (v 0.12), which uses the lsoda method in the Fortran library odepack.

Though the Scipy package is itself immature, it is merely a wrapper for well-established

solving algorithms.

From the table of transitions and their A coefficients, the B coefficients can be calcu-

lated directly.

(4.8) B21 =
π2c3

~ω3
21

× A21

(4.9) B12 =
g2

g1

B21

A careful discussion of Eqn. 4.8 is given by [16]. Sources provide differing versions of

the above formulae owning to different definitions of related quantities. The version used

here is from [16], which also sets the definition of ρ to be optical energy density (energy
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per volume) per unit frequency. The relation between ρ and optical intensity is then

(4.10) ρ(ω) = cI(ω)dω.

Here intensity I is optical power per unit area, also termed irradiance in some sources.

The driving radiation spectrum used in the simulation is that of an fs-laser whose

output has been pulse shaped (see Ch. 3). The reference spectroscopy described in Ch. 6

was used to experimentally set the shaping parameters.

For the simulation, the arctan function is scaled so that the limiting values for large

and small ω are zero and one respectively. The functional form used to model the pulsed

shaped spectrum is that of a Gaussian multiplied by an arctan term that acts as a

broadened step function (see Fig. 4.2). The sharpness of this effective step function is

quantified by the width of the frequency interval in which the arctan term falls from 90%

of its maximum value to 10% of this value.

(4.11) ρ(ω) = Ae(ω−ω0)2/σ2︸ ︷︷ ︸
unshaped laser spectrum

×

effective step function︷ ︸︸ ︷
1

π
[arctan(α(ω − ωps)) +

π

2
] .

Four cases are considered: two in which the pulse shaping cutoff is ideally positioned,

but with varying shaping resolution, and two additional cases in which the pulse shaping

cutoff is misplaced. In all cases, the intensity of the pulse is 250 mW/mm2, corresponding

to the measured optical power in our experimental setup focused into one mm2. The

FWHM of the pulse is set to 100 cm−1, and the center of the unshaped gaussian is set to

26,000 cm−1. The conditions are summarized in Tbl. 4.1.
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Figure 4.2. Gaussian and arctan function plotted separately. A vertical
dotted line indicates the midpoint of the arctan cutoff.

Figure 4.3. Product of gaussian and arctan functions. A vertical dotted
line indicates the midpoint of the arctan cutoff.
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Table 4.1. Cases considered in rate equation simulation. Cutoff position is
given in cm−1 relative to bandhead. Shaping width is the 90-10 width of
the arctan term, given in cm−1.

Case Description Cutoff position Shaping width
(a) Ideal 0 1
(b) Broadened 0 10
(c) Red-detuned -10 1
(d) Blue-detuned +10 1
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4.3. Results and Discussion

In case (a), the ideal case, the initial population is step-wise cooled into the ground

states with a maximum of 89.9% of the population in the ground states after 140 µsec.

After this time, population leaks from the ground states to vibrational excitations on a

timescale of ms. This effect is caused by the width of the pulse shaping cutoff, which

causes some r-branch transitions to be driven.

In case (b), in which the pulse shaping cutoff is broadened, more r-branch transitions

are driven than in case (a), and the p-branch transitions nearest the band head are driven

more slowly. The result is a smaller maximum ground state population (64.4% after

131 µsec) and a faster rate of sustained cycling due to driving the r-branch. Population

accumulates in vibrationally excited states more rapidly than in (a) due to this increased

cycling rate.

In case (c), several r-branch transitions are driven at full intensity, causing rapid

depopulation of the ground states. The full p-branch is driven at full intensity however, so

this population can again be cooled, and the resulting rate equilibrium causes a maximum

ground state population of 17.9% after 111 µsec. The continued cycling of this population

is stronger than in case (b), causing a comparatively more rapid buildup of population in

vibrationally excited levels. Another symptom of the persistent cycling is the appreciable

buildup of population in the B state.

In case (d), some p-branch transitions are driven only by the weak shoulder of the pulse

shaping cutoff, and the r-branch is still further suppressed. Accordingly, slow step-wise

cooling of the population occurs, with negligible accumulation in vibrationally excited

states. Additionally, some non-negligible population accumulates in vibrationally excited
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Figure 4.4. Simulation results for ideal pulse shaping. The maximum pop-
ulation collected in the three ground states is 89.9% after 140 µsec.

Figure 4.5. Simulation results for broadened pulse shaping. The maximum
population collected in the three ground states is 64.6% after 131 µsec.

states during the first 100 µsec, but eventually is repumped; the 1-1 band overlaps the

0-0 band.
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Figure 4.6. Simulation results for blue-detuned pulse shaping. The maxi-
mum population collected in the three ground states is 17.9% after 111 µsec.

Figure 4.7. Simulation results for red-detuned pulse shaping. The max-
imum population collected in the three ground states is 47.6% after
2000 µsec, which is the end of the simulation.
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The simulation justifies the following conclusions. First, the effectiveness of rotational

cooling is not strongly sensitive to pulse shaping resolution if the cutoff is properly posi-

tioned. In case (b), where the pulse shaping resolution is broadened to a 90-10 width of

10 cm−1, nearly two thirds of the population collects in the ground states, an amount that

should be detectable with only modest state readout effectiveness. The REMPD method

of state readout is described in Ch. 5. Secondly, the effectiveness of rotational cooling

is sensitive to the positioning of the pulse-shaping cutoff, affecting both the equilibrium

population in the ground states as well as timescale on which this equilibrium is reached,

as illustrated by cases (c) and (d). In these cases, the pulse shaping cutoff is misplaced by

±10 cm−1, which approximately the resolution with that a commercial spectrometer can

be used to position the pulse shaping cutoff. A better method of transferring knowledge

of the band head location from the reference spectroscopy to the pulse shaping setup must

be used, or an experimental parameter space is created which much be searched. Finally,

the overlap of the 0-0 band with higher order ∆v = 0 bands is not problematic.
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CHAPTER 5

Resonance Enhanced Multi-photon Dissociation

5.1. Overview

Rotational cooling of SiO+ is verified by state-selective photodissociation, an estab-

lished method called resonance enhanced multi-photon dissociation (REMPD). In its sim-

plest version, this is a two-photon process, and in cases where the two photons are the

same color, the process is called 1+1 REMPD. If they are different color, it is called 1+1′

REMPD. In either case, the first photon drives an excitation from a target rovibrational

state to another bound state. The second photon then drives population from this bound

state to the continuum. The photoionization is state-selective because the first photon

alone lacks the necessary energy to cause photodissociation; only the population originally

in the target rovibrational state has the chance to be photodissociated. The two photon

scheme is necessary because in general bound-continuum photodissociation transitions

have a linewidth many orders of magnitude larger than bound-bound transitions, and so

a single-photon photodissociation scheme would not be state-selective.

To ensure a sufficient photodissociation rate, the choice of second photon color must

be made with consideration of the continuum states of the molecule. The calculation

of photodissociation cross sections, which guides the choice of photon color, is discussed

in Sec. 5.3. The dissociation is detected by mass spectrometry of the ion cloud using a
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destructive technique called q-scanning, described in Sec. 5.4. Sec. 5.2 explains how pho-

todissociation rate is calculated from cross section and illustrates numerically for typical

experimental conditions.
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5.2. Relation of cross section to photodissociation rate

Typically, REMPD is done with pulsed light sources whose power is characterized by

their fluence, or energy per shot per area F = I ·∆t, where I is intensity and ∆t is pulse

duration. Since the applied fluence is finite, the photodissociation success rate is non

unity. Estimation of the original population from an experimental measurement requires

estimation of this success rate, which is a function of both fluence and photodissociation

cross section and is calculated as follows.

The Poisson distribution gives the probability of a given number of events occurring

in a specified time interval, assuming that these events occur at a characteristic rate and

are independent of previous occurrences. Given a mean number of events per observation

interval, λ, the probability of exactly k successes in an observation interval is

(5.1) P (k;λ) =
λke−λ

k!
.

This describes photoionization of a molecule since each photon independently has a prob-

ability of σ/A to cause photoionization, where σ is the cross section and A is the beam

cross sectional area. Here the observation interval is chosen to be the duration of one

optical pulse. Although the molecule can be photoionized only once, outcomes with two

or more photoionization events during one observation interval are meaningful; they must

be summed over to compute the correct probability for photoionization. Since the action

of each photon is assumed independent (in that each photon has equal probability of

causing photoionization, independent of previous outcomes), λ = Nσ/A for a pulse with

N photons.
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The probability of one or more photoionization events is

P (k ≥ 1;λ) =
∞∑
k=1

λke−λ

k!
= e−λ

∞∑
k=1

λk

k!
= e−λ(eλ − 1)

= 1− e−λ.

(5.2)

If this beam has intensity

(5.3) I =
N~ω

∆t · A
,

then

(5.4) λ = σN/A = σ × I∆t

~ω
,

and from Eqn. 5.2 the probability per pulse of a molecule being photoionized is

(5.5) P = 1− exp(−σI∆t

~ω
).

The full photodissociation probability is the product of Eqn. 5.5 and the probability

of excitation due to the first photon. If sufficient intensity is applied driving the bound-

bound transition, then the Rabi frequency will be large compared to the pulse duration,

and half of the initial population will be eligible for photoionization. Eqn. 5.5 divided by

two is then the full probability per pulse. The following example illustrates these ideas

under typical experimental conditions.

In SiO+, 354 nm light drives the 2-0 band and can further drive 1+1 REMPD by

the B2Σ+ → (3)2Σ+ channel with cross section σ = 2 · 10−19 cm2 (see Sec. 5.3). At

this wavelength, a Pyridine 2 dye laser, pumped at 10 Hz by 4 W of 532 nm light from
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a Nd:YAG laser, produces > 5 mJ per 10 nsec pulse. The 2-0 transition has Isat =

5 · 10−5 mW/cm2 assuming a natural lifetime τ ≈ 10 ms. Focusing the dye output

to a 200 µm beam radius causes > 10 Rabi flops per 10 nsec pulse, so it is valid to

assume that half the population is eligible for photodissociation. The overall probability

of photodissociation per pulse is then 37.9 %, and several pulses suffice to ensure nearly

complete dissociation.
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5.3. Calculation of photodissociation cross sections

The cross section for bound→ continuum transitions can depend strongly on the wave-

length of the driving photon. In order to ensure a choice of second photon color resulting

in a reasonable REMPD rate, photodissociation cross sections have been calculated us-

ing BCONT [23], a software package for computing properties of bound → continuum

transitions. This section describes the physics underlying this calculation and reviews the

BCONT output.

For any single-photon transition in a diatomic molecule, the transition probability

is proportional to a matrix element that can be factored into rotational, vibrational,

and electronic components. The rotational contribution is called a Hönl-London factor

and is neglected in this section as it is of order one. The vibrational contribution is

the direct overlap integral between the initial and final state vibrational wavefunctions,

| < vi|vf > |2, and is called the Franck-Condon factor. And the electronic contribution,

which involves the electronic wavefunctions and the electric dipole operator, gives the

transition dipole moment function.

Since the vibrational wavefunctions are the eigenstates of the PECs, computing the

Franck-Condon factor requires knowledge of the PECs of the bound and continuum states.

Three theory groups have produced PECs for SiO+: François [4], Das [6], and Honjou

[18][17]. Das and Honjou both include state-repulsion considerations neglected by the

earlier work of François, and so this section presents the BCONT results resulting from

the Das and Honojou PECs.
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Figure 5.1. Potential energy curves for SiO+ calculated from theory by Das
[6]. Photodissociation from the B state (red) via an optical transition can
proceed to any of three higher-lying states: (2)2Π (green), (3)2Σ+ (blue), or
(3)2Π (not pictured). Figure is as produced by Das, except where color has
been added to highlight relevant states. Other states lying above B are not
suitable for REMPD as doublet→ quadruplet transitions are forbidden, as
are Σ→ ∆ transitions.

The vertical spacing between the bound and continuum PECs sets the scale of transi-

tion energy for which the cross section is strongest. In units of wavenumber, optical tran-

sitions correspond to approximately 10,000–30,000 cm−1, which can be seen in Fig. 5.1

to correspond to transitions from B to several higher-lying continuum states which have

been highlighted in color. Transitions from B to other pictured states are strongly sup-

pressed by selection rules that disallow doublet→ quadruplet and Σ→ ∆ transitions. In

addition to the two usable states above B highlighted in Fig. 5.1, a third is not visible,



68

though is described by François and Honjou. Thus there are three available photodissoci-

ation channels: B2Σ+ → (2)2Π, B2Σ+→ (3)2Σ+, and B2Σ+→ (3)2Π. Energetically, these

roughly correspond to the available ND:YAG harmonics: 532 nm (second harmonic), 355

nm (third harmonic), and 266 nm (fourth harmonic), respectively, and these three colors

were each used in 1+1′ REMPD attempts.

Features of the photodissociation cross section curves resulting from these three chan-

nels can be better understood by the Condon reflection approximation, a method for

intuiting the shape of the photodissociation curve from the PECs. For unbound PECs,

the eigenfunctions are Airy functions with continuously spaced eigenvalues. The reflec-

tion approximation takes these eigenfunctions to be delta functions, which reduces the

vibrational overlap integral to a reflection of bound state vibrational wavefunction (see

Fig. 5.2). The result is that the plot of photodissociation cross section against transition

energy mimics the shape of the bound state wavefunction; for v′′ 6= 0, the photodissocia-

tion cross section will have v′′ nodes, just as the bound wavefunction does.



69

Figure 5.2. The Condon reflection approximation simplifies the computa-
tion of the vibrational overlap integral. The unbound wavefunctions are
approximated as delta functions. Figure reproduced from [24].

The TDMF’s for SiO+ for these transitions are not available in the literature, either

from experiment or theory. They have been estimated in unpublished work by the François

group, however, and our calculation uses their values (see Table 5.1), provided to us in

private communication [11].

Using the PECs from Das produces the photodissociation curves in Fig. 5.3, while

using those from Honjou produces Fig. 5.4. In both cases the TDMF from François is

used.
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Table 5.1. Theory values of transition dipole moment functions from un-
published correspondence with J.P. François. Atomic units are used, which
are Bohr radii, a0 = 0.529 Å, for distance and ea0 = 2.54 Debye for dipole
moment.

Moment (a.u.)
Transition 2.89 3.20 3.60

(2)2Π−B2Σ+ 0.07446 0.05019 0.02316
(3)2Σ+ −B2Σ+ 0.17456 0.25549 0.37878
(3)2Π−B2Σ+ 0.02478 0.02921 0.08362

Figure 5.3. Photodissociation cross sections calculated using potential en-
ergy curves from Das. Dotted lines indicate easily accessible 1′ photon
wavelengths of 355 nm and 532 nm.
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Figure 5.4. Photodissociation cross sections calculated using potential en-
ergy curves from Honjou. Dotted lines indicate easily accessible 1′ photon
wavelengths of 355 nm and 532 nm.
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5.4. Q-scanning

After REMPD of a target rovibrational state or states, the ratio of Si+ to SiO+ ions

in the sample can be used to estimate the proportion of the initial population in the

target state(s). Q-scanning, a mass-selective deloading technique, is used to generate the

mass spectrum. The rf voltage amplitude is swept down to zero in the presence of a large

DC bias, and because the pseudopotential confinement strength scales with mass, ions of

different mass deload the trap at different rf voltage thresholds. The DC bias is due to the

ion detector, a (single-)channel electron multiplier (CEM), positioned near the trap as

shown in Fig. 5.5. The name q-scan derives from the fact that the sweeping of rf voltage

amplitude can be understood in the (a,q) formalism as a sweep of the q parameter, which

is proportional to rf voltage amplitude.

Figure 5.5. CEM positioned near trap with line-of-sight access to trapping
region. When a large negative voltage is applied to the CEM, trapped ions
are attracted and eventually deloaded.

The CEM operates by using a large negative voltage to attract positive ions into its

collecting electrode. The impact at this electrode produces secondary electron emissions,

inducing a cascade of electrons to arrive at the CEM output electrode, and following
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circuitry converts this signal to a voltage. The gain of the CEM may be tuned to operate

as a digital counter, in which a single ion saturates the output temporarily, or as an analog

device, in which the signal amplitude is proportional to the ion count.

Although the dynamics associated with deloading a large crystal are complex, Welling

provides a simple model for understanding the scaling between ion mass and the threshold

rf voltage for confinement [47]. In principle, the (a,q) formalism predicts, for a=0, stability

as q approaches zero. The trap depth, however, also decreases with q, so at small q the

effect of perturbing fields is strong. If a uniform external electric field E0 is applied, a

lower bound on q (and hence an upper bound on mass) is induced. Equating the confining

force due to the external field with the confining force due to the pseudopotential yields

(5.6)
m

q
=

1

2

eV 2
rf

E0r3
0Ω2

where m/q is the mass to charge ratio of the ion.

This expression permits the x-axis of each measured mass spectrum to be converted

from rf voltage to mass. The rf voltage corresponding to the maximum number of ion

counts is assumed to be due to Ba+ and assigned mass 138. Other rf voltages are assigned

a mass by assuming the quadratic dependence of rf voltage on m/q in Eqn. 5.6.

The quality of the mass spectrometry resulting from q-scanning is typically quantified

by m/∆m, the relative width of a mass peak corresponding to a single isotopically-pure

species. In the experimental setup described here, m/∆m = 5-10 is typically obtained for

cooled ions, while Welling reports m/∆m values of ≤ 5 for uncooled ions.

Experimentally, ion samples are prepared with the CEM (Burle 5900) off. The collector

electrode is then adiabatically lowered to -2.8 kV (power supply used is Acopian model
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Figure 5.6. Typical mass spectrum as measured by q-scanning. (a) Ba+

crystal. The dark ions at far left are isotopes of Ba+ other than the 138
species used for cooling, pushed to the left side by light pressure. (b)
Ba+/SiO+ bicrystal. The dark core visible in the center is composed of
SiO+. (c) Mass spectrum generated by q-scanning the bicrystal seen in (b).
The mass axis is calibrated by assigning the bin with maximal counts to
mass 138. (d) Expanded view of (c) focusing on the mass bins assigned to
44-SiO+.

NO.35HA8.5T) while DC compensation of several tenths of a volt is applied to keep the

trapped ions at their original position.

The rf voltage is generated by a function generator passed through an rf amplifier

(Minicircuits TIA-1000-IR8) and into a torroidal resonator. The function generator out-

put amplitude is controlled by an analog 0-5 volt signal which is scanned in several hundred
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steps, with the CEM collecting for typically 10 µsec at each voltage step. (No additional

ion counts result from collecting for longer.) Calibration of rf voltage at the trap against

the 0-5 volt control voltage is performed previously by a high impedance probe attached

at the resonator output, sampled in sync with the q-scan. The CEM signal is sent through

an amplifier (SRS SR445A) to a digital counter (SRS SR 400) which bins the counts at

each voltage step. The discriminator on the counter is set so that q-scans of an empty

trap typically yield zero counts, or infrequently yield one count. Fig. 5.6 shows a typical

mass spectrum.
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CHAPTER 6

Reference Spectroscopy

6.1. Methodology

A spectroscopic reference locating the 0-0 band is necessary both to tune the state-

selective photon in REMPD as well as position the pulse-shaping cutoff.

The method used for spectroscopy is detection of laser-induced fluorescence (LIF)

from SiO+ produced by ablation of an Si+ sample in an O2 environment. Spectroscopy

of the B-X 0-0 band using this method was published in 1997 [26]. SiO+ formed in

the ablation plume is interrogated by a probe laser which is swept across a frequency

range that contains the B-X 0-0 band. When resonant with a rotational line within

this band, spontaneous emission from the resulting excited state is observed on a gated

photomultiplier tube (PMT).

A schematic of the experimental apparatus is presented in Fig. 6.1. The ablation and

probe pulses are both generated by Nd:YAG lasers; the direct output of one Nd:YAG

laser at 1064 nm is used for ablation, while the second Nd:YAG laser pumps a dye laser.

The ablation pulse is 1064 nm and is produced by an Nd:YAG laser (Continuum

Minilite II). The probe pulse is produced by pumping a dye with a second Nd:YAG laser

after frequency doubling the Nd:YAG output from 1064 nm to 532 nm. The dye laser

(Sirah PrecisionScan) is filled with one of several dyes that laze at 770 nm, and this output

is frequency doubled to produce the 385 nm probe light.



77

The remainder of this section is divided into subsections addressing specific imple-

mentation issues. The methods that were observed to enhance signal strength are also

discussed. With practice, clean spectroscopy was reproducible on a daily basis with typi-

cally half an hour of set up. A list of the equipment required for this experiment is given

in Tbl. 6.1.

Timing concerns

The components of the experiment whose timing must be coordinated are: (1) the

ablation pulse, (2) the probe pulse, (3) the PMT gating. Fig. 6.2 (a) shows the desired

relative timing. The ablation pulse arrives first, producing an ablation plume that begins

to expand and move away from the sample surface. The probe pulse reaches the probe

region some time T1 later, just as the ablation products reach the probe region. The

PMT gate then opens at some time T2 and closes at some time T3, set to exclude the

Figure 6.1. Schematic of apparatus for SiO+ reference spectroscopy. Laser-
induced fluorescence (LIF) is detected by a photomultiplier tube (PMT).
SiO+ is produced by ablation of a Si sample in the presence of O2, typically
at about 100 mTorr.
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probe pulse but capture fluorescence from spontaneous decay of excited states produced

by the probe.
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Figure 6.2. Timing diagram for a single spectroscopic experiment, consist-
ing of ablation, probe, and light collection. Experiments are repeated at
the repetition rate of the pulse lasers, 10 Hz.

Fig. 6.2 (b) shows the timing of a Nd:YAG laser pulse is controlled by the firing first

of a flashlamp (which pumps the gain medium) and then of a q-switch (which releases

the circulating optical power). Mistuning of the delay between the firing of these two

components reduces output power. Both Nd:YAG lasers used in this experiment allow

the flashlamp to be triggered either internally or externally as well as the q-switch to be

triggered internally or externally. If both are triggered internally, the laser fires pulses

based on its own internal clock. If both are triggered externally, the master clock is the

external trigger source.
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The most demanding timing requirement in this experiment is the delay between the

probe interrogation and the PMT gating. The excited state produced by driving the B-X

0-0 band has natural lifetime = 70 nsec, while the probe light scatters in the chamber

for 1’s to 10’s of nsec after its arrival. The PMT gate must open to collect the former of

these while rejecting the latter. A ones of ns relative timing repeatability is thus desired.

In the experimental realization, the maser clock for the experiment is produced from an

NI-6602 timing card, which has a 80 MHz internal clock and thus has 12.5 nsec precision

in relative pulse timing. For the ablation laser, both the flashlamp and ablation q-switch

firing are controlled from this master clock. For the probe laser, the probe flashlamp is

controlled by the master clock, but the probe q-switch is triggered by the internal clock

of the probe YAG.

When its q-switch is internally triggered, the Nd:YAG produces a TTL output in

advance of the q-switch firing, and this is used to trigger the PMT gating.

The gating of the PMT signal is done externally from the PMT by a boxcar integrator

(SRS SR250). This gating is set on the integrator relative to a trigger, and the gating has

1’s of nsec repeatability when triggered in this way.

Positioning the Si Sample

The Si sample is held in a custom fabricated mount designed by Jason Nguyen and

shown in Fig. 6.3. Mechanical drawings are included in the supplemental materials to

this document. When assembling the chamber, the mounting plates are adjusted until

the sample is 1̃0 mm from the probe beam path. Because light baffles constrain the probe

beam location, setting the mounting plate locations is the only method for controlling

the distance between the sample and the probe region. The probe timing is set by this
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distance; ideally the probe light arrives just as the ablation plume has moved into the

probe region.

Figure 6.3. Si+ sample holder made from modified 2.75” CF blank. Design
due to Jason Nguyen. The flange surface is tapped to accept four threaded
rods and custom fabricated plates mount onto the rods and clamp onto the
Si+ sample and allow mm scale tuning of the sample location.

Optimization of Ablation Behavior

A difficulty in producing a consistent signal from this experiment is that ablation

produces an inconsistent sample flux. Changes in signal strength during spectroscopy

runs when all experimental parameters (except probe laser frequency) were attributed

to changes in sample flux. Consistently strong signal lasting more than ten minutes (at

10 Hz interrogation) was observed only rarely.

At high ablation powers (ones of mJ), the ablation plume becomes visible to the eye.

The positioning of the focusing lens (the last lens before the chamber in the ablation laser

beam path) was optimized by maximizing the brightness of this ablation spot, which

occurred when the beam was tightly focused on the sample surface.

Effect of O2 Pressure Tuning
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To prepare the vacuum system for a spectroscopic data run, the chamber is first

pumped down by rough pump and turbo pump to less than 1e-4 (the limit of the attached

Convectron gauge). The Turbo pump is then turned off and allowed to slow its rotations

on its own over several minutes. The valve to the turbo and rough pump is then closed.

When it has sufficiently slowed to be able to pump against atmosphere, the leak valve to

the O2 inlet is opened, but only enough to observe some O2 in the system. In practice,

pressure rises to ones of Torr were typical at this stage. The valve to the Turbo was then

opened slightly until a pressure drop was visible. Tightening or loosening this valve was

found to be a reliable method of controlling the rate at which O2 was pumped out of the

system. When the desired pressure was reached, often 100 mTorr for first attempts to see

a spectroscopy signal, the valve is closed.

Signal strength can be significantly optimized by tuning the O2 concentration while

observing the PMT signal. Carefully opening the valve to the Turbo was found to permit

controlled reduction in O2 concentration, with the PMT resonance amplitude responding

directly–typically the optimized concentration was between 30 and 100 mTorr.

Minimization of Background Photon Counts

The lifetime of the excited state in the 0-0 band and the timescale for ring down of

scattered probe light are of comparable timescale. An in vacuo iris, made from a 2.75”

CF blank with a 1 cm diameter drilled central hole, is used as a light baffle. The probe

beam is thus constrained to pass through the geometric center of the CF cross; it passes

through a baffle both as it enters and as it exits.
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(a) PMT signal, µsec scale, showing
fluorescence from the ablation plume
which may have complicated struc-
ture and persist for up to 10’s of nsec.

(b) PMT signal from (a), zoomed to
nsec scale during interrogation.

Figure 6.4. Example PMT signal resulting from a single experiment. (b)
shows background due to the probe laser scattering in the chamber. The
superimposed gate logic signal shows where the LIF signal is observed to
appear.
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Name Vendor Model Number Comment
Boxcar Integrator SRS SR250
Computer Interface Module SRS SR245 Supporting hardware

for SR250
Power Supply SRS SRS280 Supporting hardware

for SR250
Signal Amplifier SRS SR445A 4 ch, DC to 350 MHz

PMT Hammamatsu HRT7000 Analog PMT
1” UV Lens, f=50 mm (2) Thorlabs LA1131-A PMT light collection
Translation stage (3) Thorlabs PT3 Collection optics posi-

tioning
Blackout material Thorlabs BK5 To shield collection

optics

Ablation Laser Continuum Minilite II
Probe Laser Sirah Precision Scan

2.75” CF Viewport (4) Duniway VP-275-150 AR coat not essential
2.75” CF Six Way Cross Lesker C6-0275
2.75” CF Nipple (2) Duniway NP-275
2.75” CF Baffle (2) PChemLabs P104724 Custom modifica-

tions. See text.
Si sample holder n/a n/a Custom modifica-

tions. See text.

1” UV Mirror (5+) Thorlabs E01 For 385 nm probe light
1” Nd:YAG Line Mirror (5+) Thorlabs NB1-K13 For ablation beam
Posts, Post Holders Thorlabs Various As needed
Lens Tubing, Mounts Thorlabs Various As needed

Table 6.1. Parts list. Vacuum pumps, gauges, valves and mounting hard-
ware may be varied and are not listed above. Mechanical stability of cham-
ber and vacuum quality requirements are found to be modest. Vendor part
numbers confirmed accurate as of February 13, 2014.
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6.2. Spectroscopic Results and Implications for Repeatability

Figure 6.5. Spectrum of the B-X 0-0 band. Full data set is composed of
several sequential scans.

An example of the measured spectrum of the 0-0 band is shown in Fig. 6.5. The

full data set is composed of several scans, as signal strength variability often necessitated

reoptimizing experimental parameters, frequently between scans. The line width of the

rotational transitions, which are dominated by Doppler broadening is observed to be ones

of GHz, far greater than the natural line width of these transitions which is typically

Γ =1/70 nsec = 14 MHz.

The 1-0 and 2-0 bands were also investigated. The experimental signal strength of

these bands was found to be weaker than the 0-0 band. These higher bands are expected

to be more difficult to drive due to Franck-Condon factor suppression. The fluorescence is

collected from all decay pathways, however, so the increased difficulty in observing those

bands is due to insufficient saturation of the transition; indeed while µJ per shot of probe

intensity was sufficient to drive the 0-0 spectroscopy, the maximum available 1’s of mJ

were used to recover comparable signal strength in the spectroscopy of the 1-0 and 2-0

bands.
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Repeatability issues result from the fact that the dye laser wavelength is tuned by

a step motor which changes the angle of the internal grating. The accuracy to which

the wavelength can be set is thus limited by the step motor repeatability. At the mK

translational temperatures achieved by sympathetic cooling, the linewidths of rotational

transitions in SiO+ approach their natural linewidth = 1/70 nsec.

A typical data run mapping the 0-0 band, such as the one shown in Fig. 6.6 scans over

a few 10’s of cm−1. This is a small fraction of the step motor tuning range. Since the step

motor position is confirmed to map linearly over this wider tuning range, the assumption

is made that it scans linearly during a given data run. Then only a calibration offset error

is possible.

The positions of each rotational line is extracted from the raw data by taking the

local maximum within preselected ranges. The data can then be fit to a three parameter

fitting function in which the free parameters are the band head location and the rotational

constants of the upper and lower state, denoted ν0, B′e and B′′e . The explicit functional

form of the fitting curve is, for a P-branch transition from a ground state with rotational

quantum number N ,

(6.1) ν = ν0 + (B′e −B′′e )N − (B′e +B′′e )N2

and for an R-branch transition, with N as above,

(6.2) ν = ν0 + 2B′e − (3B′e +B′′e )N + (B′e −B′′e )N2.

These expressions are derived from the formulae for the energies of the involved states for

2Σ+ rotational levels given by [15].
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Figure 6.6. Example of fitting to rotational line locations found in a spec-
troscopic measurement of the 0-0 band. The fitting parameters are the
band head location and the rotational constants of the upper and lower
state. The fit is used to predict other rotational line locations, in particular
the P1 line.

Spectroscopy of the same band is repeated several times and the fitting results com-

pared. To facilitate comparison, the fit is used to predict the P1 location. The predicted

P1 locations of successive runs are found to have small variation on the timescale of

hours, but large variation from day to day. Tbl. 6.2 shows a series of predicted P1 values

measured on subsequent days. The predicted values from a given day are seen to cluster

together with small variation compared to the day-to-day shift. This shift is also large

compared to the natural linewidth of the rotational transitions, indicating that each day

the dye laser must be calibrated to be repeatable to the order of rotational line widths.
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Sensors measuring temperature and relative humidity were installed and some corre-

lation between P1 drift and lab conditions was apparent. Predicting the P1 shift from

lab conditions proved imprecise, however, so daily recalibration of the probe sweep was

performed. The sensor data are available in the lab notebooks.
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Date Time Band Predicted P1 location (cm−1)
Feb 8, 2013 11:25 0-0 26043.44
Feb 8, 2013 14:20 0-0 26043.26

Feb 18, 2013 17:00 0-0 26042.91

Feb 20, 2013 9:45 0-0 26043.31
Feb 20, 2013 9:50 0-0 26043.33
Feb 20, 2013 9:55 0-0 26043.32
Feb 20, 2013 10:00 0-0 26043.35

Table 6.2. Selected results of repeated SiO+ spectroscopy illustrating day-
to-day drift of absolute probe calibration. The location of the P1 transition
is predicted from each scan, and the variability in this value demonstrates
the need for daily frequency recalibration.
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